SinceZis the standardized r.v.s, and L=[.9,.7,.5]T,we have the following: LLT+Ψ=[.9,.7,.5]T[.9,.7,.5]+[.19000.51000.75]=[.81.63.45.63.49.35.45.35.25][1.0.63.45.631.0.35.45.351.0]=ρ
Since m =1, the communalities are calculated as the following: h21=ℓ211=.9=.81h22=ℓ221=.7=.49h23=ℓ231=.5=.25
Communalities indicate the common variance shared by factors with given variables. Higher communality indicated that larger amount of the variance in the variable has been extracted by the factor solution. For better measurement of factor analysis communalities should be 0.4 or greater.
Corr(Zi,F1)=ℓi1⟹Corr(Zi,F1)=L=[.9,.7,.5]T Because the first variable Z1 has the largest correlation with common factor, Z1 will carry greatest weight in term of F1.
In PCA: Xn×p→ˆΣ=XXTApplying spectral decompostion, we have: ˆΣ=PΛPTPC scores form the matrix which is: PΛ12In MDS: Xn×p→B→DB=XXT=PΛPT→X=PΛ12So they are equivalent
library(MASS)
data <-source("table5_12.txt")$value
attach(data)
data
## 1assault and battery 2rape 3embezzlement 4perjury
## 1assault and battery 0.0 21.0 71.2 36.4
## 2rape 21.0 0.0 54.1 36.4
## 3embezzlement 71.2 54.1 0.0 36.4
## 4perjury 36.4 36.4 36.4 0.0
## 5libel 52.1 54.1 52.1 0.7
## 6burglary 89.9 75.2 36.4 54.1
## 7prostitution 53.0 73.0 75.2 52.1
## 8receiving stolen goods 90.1 93.2 71.2 63.4
## 5libel 6burglary 7prostitution
## 1assault and battery 52.1 89.9 53.0
## 2rape 54.1 75.2 73.0
## 3embezzlement 52.1 36.4 75.2
## 4perjury 0.7 54.1 52.1
## 5libel 0.0 53.0 36.4
## 6burglary 53.0 0.0 88.0
## 7prostitution 36.4 88.0 3.0
## 8receiving stolen goods 52.1 36.4 73.0
## 8receiving stolen goods
## 1assault and battery 90.1
## 2rape 93.2
## 3embezzlement 71.2
## 4perjury 63.4
## 5libel 52.1
## 6burglary 36.4
## 7prostitution 73.0
## 8receiving stolen goods 0.0
data.mds<-cmdscale(as.matrix(data),k=2,eig=T)
data.mds$eig
## [1] 7.656184e+03 4.284887e+03 1.247778e+03 4.551195e+02 4.458949e+01
## [6] 6.252776e-13 -4.294064e+02 -4.625762e+02
data.mds$points
## [,1] [,2]
## 1assault and battery 43.5559886 -0.7119682
## 2rape 33.0203254 26.8701326
## 3embezzlement -12.7175678 28.6671549
## 4perjury 8.2385788 4.9823016
## 5libel -0.5537496 -14.3945452
## 6burglary -44.5558031 18.0592801
## 7prostitution 18.8280191 -40.9023243
## 8receiving stolen goods -45.8157912 -22.5700315
par(pty="s")
xyrange = 90
plot(-data.mds$points[,1],data.mds$points[,2],type="n",xlab="Coordinate 1",ylab="Coordinate 2",
xlim=c(-xyrange,xyrange),ylim=c(-xyrange,xyrange))
text(-data.mds$points[,1],data.mds$points[,2],labels=row.names(data))
The two dimensions can be interpreted as the degree of immorality and the severity of the consequences.