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Introduction - auditory stimulus decoding

» Reconstruct the speech stimuli from intracranial
Electrocorticographic (ECoG) recordings.

* Study the activity of cortical regions during hearing. Acoustic waveform
» Decoding auditory stimulus from neural activity enables M -
* neuroscience studies via model interpretation.
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communication. Reconstructed Cortical surface
spectrogram field potentials

* brain computer interface application.
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Introduction - previous work

Stimulus Decoding

 Linear models have been used to quantitatively demonstrate STG cortical representations [11.
* provided a means to study how the STG area reacts to speech stimulus.
« intelligibility of the recovered speech was limited.

» WaveNet-like network for stimulus decoding from ECoG recordings in the STG area [21.

* obtained significant improvement over linear models

[1] Brian N Pasley, et al., “Reconstructing speech from human auditory cortex,” PLoS Biology, 2012.

[2] Ran Wang, et al., “Reconstructing speech stimuli from human auditory cortex activity using a WaveNet approach,” IEEE SPMB, 2018.
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NYU Introduction - in this talk

* Goal of this project

* leverage deep learning to decode intelligible audio stimuli from ECoG
recordings of the cortical regions including the STG area. Acoustic waveform

» study the developed model to understand speech perception in cortical M -
networks.

» Major challenges
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» scarcity of the training data: limited ECoG and speech stimuli pairs. 02 . S
.
. eqe . . Recgrr?sfrfjsc)ted Cortical surface
» variability of electrode density and placement across subjects spectrogram field potentials

¢ limited number of subjects and limited words per subject.
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NYU Introduction - in this talk

 To overcome the challenges:
* use available natural speech datasets.
* use generative network and transfer learning ideas.
* pre-train parts of a network using a large corpus of natural speech data.

 Proposed methods are applicable when training data is limited.
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NYU Proposed framework

* Encoder maps an ECoG signal to a representation space with a prescribed
distribution.

 Generator constructs a spectrogram from the representation vector.

T ¥

* Vocoder converts the spectrogram to sound waveform.

Encoder
* Pre-train the generator and vocoder using large corpus of speech data. p l representation
. . . . Space
* Refine the encoder and generator using the paired ECoG and stimuli data.
Generator

g + spectrogram

Vocoder

+ waveform
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Generator network structure
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Generates a spectrogram of a spoken word.

Can be pre-trained on a larger corpus dataset.

Proposed structure is inspired by WaveNet [1]-

Different dilation rates allow filters to span small to large temporal duration.

[1] Akira Tamamori, et al., “Speaker-dependent WaveNet vocoder,” Interspeech, 2017.
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Generator network pre-training
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* Pre-training: random vectors Z follows an i.i.d. standard Gaussian

distribution
o £~ N(0,0°1)
 Gaussian distribution since l representation
., . . . vector

« encoder output distribution is not known ahead of time.
Generator

* it maximizes the capacity of the representation space. -
(7 * spectrogram
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Encoder network structure

& i Conv ]
Q : @x1x1) é
3 | P4 ~ 2 A
=l 184 124 2 4 S 3 tati
=0 S| NGNS = | IEI g s S PRl SR — = vector
R M o e A - . ©
= = . Attention Gate = ! . “)e O
é =~ Sk M o =2 =0
; o Ao A
* The encoder serves as a feature extractor that maps the ECoG signals to a ECoG
. SRS
representation vector. T ¥
* Initial layers use temporal filtering Encoder
* ECoG signal has less correlations between electrodes than across time. < l
Generator
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Encoder network structure
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« Attention gated unit SN ECoG
» allows the network to focus only on significant electrodes at each time R
step. Encoder
 improves the network accuracy by ignoring electrodes with low signal- z l
to-noise ratio.
Generator
» provides a way to analyze the dynamics of each cortical area.

Stimulus Decoding from Human Cortex with GAN Transfer Learning | R. Wang et al. | ISBI 2020 11



NYU Encoder and generator fine-tuning

* Transfer the pre-trained generator and fine-tune with the encoder.

» Kullback—Leibler (KL) divergence regularizer

* encourage the encoder output distribution to follow Gaussian. T ¥
* The loss function is: Encoder
> l representation
loss = MSE (y, 9(z)) + AKL (p (2) || M (O, 021)) Space
Generator
i T +-
true b* w*  generated
spectrogram spectrogram
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NYU Experimental results - dataset information

* Three different electrode density and coverage. High density |Low density | Hybrid
* The STG is sampled for all subjects, some other cortical (HD) (LD) (HB)
regions are sampled in LD and HB data. Spacing 4mm 10mm 10 / 5mm

* Patients undergoing treatment for refractory Epilepsy. Training Set  100-150 words 50 words 50 words

* During the task, all subjects listened to speech audio of 50 I;un.lber of 2 12 2
. . ubjects
different English words/pseudo-words.
* Each word repeated 4 times for HD and 2 times for LD and
HB.
HD

* One subject in the HD dataset passively listened to each word
while all other subjects were required to reproduce each word
after listening.
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NYU Experimental results - dataset information

* An individual model is trained and tested for each
subject.

Dataset High density |Low density | Hybrid
(HD) (LD) (HB)
4mm 10mm 10/ Smm

* For each subject, 50 unique words are used for testing. Spacing

* Rest of the samples for each subject used for training. Training St 100-150 words 50 words 50 words

- ) Number of 2 12 2
* Results are averaged across subjects with same electrode Subjects

density.
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NYU

* state-of-the-art performance in
* averaged mean squared error (MSE)
 correlation coefficient (CC).

e audio examples: here!

1. transfer-GAN: this work!

2. SpecWaveNet: Ran Wang, et al., “Reconstruct- ing speech stimuli
from human auditory cortex activity using a WaveNet approach”,
SPMB, 2018.

3. Linear model: Brian N Pasley, et al., “Reconstructing speech from
human auditory cortex,” PLoS Biology, 2012.

Experimental results - stimuli reconstruction
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MSE (=£sd) / CC (&£sd)
transfer-GAN SpecWaveNet linear model
HD | 0.58(0.09)/0.69(0.05) | 0.68(0.08)/0.61(0.05) | -/0.41(0.03)
HB | 0.53(0.03)/0.72(0.01) | 0.64(0.01)/0.66(0.02) | -/-
LD | 0.73(0.14)/0.60(0.04) | 0.79(0.15)/0.54(0.05) | -/0.3(0.05)
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https://wp.nyu.edu/videolab/ecog_demo/

Experimental results - attention mask visualization

 The attention mask shows attended electrodes with useful information and dynamics of different cortical areas.
» STG, Broca’s area and motor cortices are attended sequentially.
» STG is consistently attended during the perception period.

 Leant attention mask matches the findings in neuroscientific literature.

0.75

0.5

L Perception period
Stimuli ON Stimuli OFF
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NYU Conclusion

* Developed a framework for stimulus speech decoding from human cortex ECoG recordings.
* Proposed encoder extracts features from the ECoG signals to a representation space.
* Pre-trained generator predicts realistic spectrograms from the representation space.

 Tackled the challenge of limited training data and achieved state-of-the-art reconstruction from cortical areas
including STG.

* Attention mechanism allowed for interpretation of the results for neuroscientific discoveries.
In future work:

» Use the developed techniques to study speech processing in human cortex in finer details.

* Decode the reproduced speech.

 Use the framework for other applications with limitations in training data.
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Thank you!
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