
DeepSeek-V3

March 13
Xupeng Chen

https://arxiv.org/pdf/2412.19437v1 1

DeepSeek V3

Amazingly Efficient And Effective

 Costs amount to only $5.576M to train. And Very low inference cost

2

DeepSeek upgrade Algo and HardWare

We will focus on algorithm level innovations

3

Some (redundant) preliminaries…

4

5

6

Key-Value Cache (KV Cache)

LLM in training: parallel attention matrix calculation. In infer: one by one

Purpose: Speeds up autoregressive decoding by reusing cached keys (K) and values
(V) instead of recomputing them.

How:

Compute only the new query (Q).

Reuse cached K & V from previous steps.

Append newly computed K & V to the cache for future use.

Trade-off: Increased memory usage (batch × seq_len × hidden_size × heads), avoid
repeat calculation of K and V.

Solutions: Multi-Query Attention, Grouped-Query Attention reduce memory overhead. 7

Reduce heads of K and V

MHA, GQA, MQA

GQA widely used, (e.g.: Llama)

8

RoPE: Rotary Positional Embeddings

Absolute Position Embedding

❌ Poor generalization to unseen sequence lengths

Relative Position Embedding

❌ Extra parameters, computationally expensive

RoPE’s Advantages

✅ Generalizes naturally to longer sequences

✅ Parameter-efficient (no extra params)

✅ Stable positional encoding via rotation operations

9

RoPE: Rotary Positional Embeddings
Motivation: Encode relative positions naturally by rotating vectors.

Represent query/key vectors as complex numbers, rotating them

by angles proportional to their positions

10

1 DeepSeek’s new techniques
Multi-head Latent Attention: Compress the KV cache!

Compress attention input h_t to c_t^{KV}
through W^{DKV} (down KV). This
reduce KV cache!
Could also shrink query.
Need extra treat of RoPE.

11

MLA continued

Decoupled RoPE: W could not be absorbed since R is inserted.

R depends on q and k position.

Weight matrix absorbed in implementation
C_t reduce cache storage

12

Decouple RoPE with Latent

Simple Solution:

Add extra heads for RoPE:

q_t^R and k_t^R

13

14

So MLA is efficient but keeps good capacity

From DeepSeek V2 https://arxiv.org/pdf/2405.04434
15

DeepSeek’s Mixture of Experts

671B total parameters

with 37B activated

for each token

Great capacity in training

Efficient in Infer

16

Feed-Forward Network

Attention: most computation heavy

FFN: most parameters (> 70%), less computational heavy, LLM’s

Knowledge stored here

Compute somewhere, store elsewhere (Brain?)

17

2Mixture of Experts
Experts: split FFN into groups (feature dimension)

Dense MoE: weight the group’s output

Sparse MoE: select Top K FFN

Gate could be a MLP

18

Issues of MoE
Experts role overlap: redundant

We want different experts have different role: coding, math, daily, etc

Idea: need ensembling of more small models, number and quality tradeoff

DeepSeekMOE:

● Specialist: Split experts to finer granularity
○ Increase FFN numbers
○ Each FFN decrease feat dimension

● Generalist: Make some experts shared
○ Common sense experts
○ Always chosen

From DeepSeekMoE https://arxiv.org/pdf/2401.06066
19

Load balancing

After initialization

Self-reinforce: Router always assign token to some “better” experts.

the rich get richer and the poor get poorer

Ensemble is meaningless

20

Loss to control load balancing

In a very large batch size, make actual allocation and probability assigned to each
expert balance. Min achieved when uniformly routed.

From Switch Transformer https://arxiv.org/pdf/2101.03961
21

Concern with loss control

Might be wrong??

(0.5, 0.5) (0.5, 0.5) vs (0.1, 0.9) (0.9, 0.1)

It is worse than DeepSeek’s loss-free balancing

From DeepSeek auxiliary loss free load balancing https://arxiv.org/html/2408.15664v1
22

Loss free load balancing
Add loss might influence the model performance.

Add a bias term b_i

If in one batch, expert i is overload, decrease the bias term by gamma to reduce
the prob it is assigned

u_t: input to FFN

e_i: centroid of expert i

DeepSeek has good load balancing so

They avoid token dropping (skip connection) 23

3 Multi Token Prediction

Key technique to reduce cost and increase performance

24

Prior works: how to predict next tokens

LLM Training: Meta MTP: Parallel Heads + Training

LLM Inference → Speculative Decoding

Independent: Google/DeepMind

Self: Medusa (Parallel heads), EAGLE (Causal heads)

DeepSeek MTP: causal heads for future token prediction

25

Multi Token Prediction

During training: parallel, next token prediction with teacher forcing

A causal mask make sure only see previous ground truth tokens.

Lacks the planning ability → if we predict multi tokens…

26Meta MTP https://arxiv.org/pdf/2404.19737

Group heads and predict future 4 tokens
Training signals * 4
Planning ability, learn hard transition, useful
in inference when no teacher forcing

MTP helps predict hard transition

The hard transition is 5→A

In next token prediction case: 1/7 weights are put in hard transition learning

In next 3 tokens prediction: 3→A, 4→A, 4→B, 5→A, 5→B, 5→C. 2/7 weights

Training efficiency

Reasoning ability

27

LLM Inference: Speculative Decoding

Inference is so SLOW!

Big model, large KV cache, high memory consumption, sequential
predicting.

Small model, fast but stupid

Speculative Decoding: Ask juniors do some easy task and take over if they are
wrong

Step1 Quick Guess: A small model predicts 3-5 tokens.

Step2 Cheap Verification: The big model accepts or corrects them

28

Speculative Decoding

Step 1: a small 7B LLM proposes

Independent: another small LLM

Self: use part of the heads within big model

Step2: the big 70B LLM verifies

The predicted 5 tokens could be fed into the big LLM and compute final probability
parallelly. If it is biggest, accept, if now, big LLM recompute the wrong token.

Could reduce the forward pass rounds, save time! (not saving compute)

29https://arxiv.org/abs/2211.17192

Self Speculative Decoding

Use part of the heads within big model

Parallel heads

Autoregressive(causal) heads (better)

30
https://arxiv.org/html/2408.08146v1

DeepSeek’s MTP
Putting things together:

Predict multiple future tokens, with causal heads. I-th token’s feature concat with i+1
token’s embedding to predict i+2 token…

During inference, only main model needed. And the feature contains planning
information!

31

32

