DeepSeek-V3

March 13
Xupeng Chen

https://arxiv.org/pdf/2412.19437v1

DeepSeek V3
Amazingly Efficient And Effective

Costs amount to only $5.576M to train. And Very low inference cost

@ DeepSeek-V3 wm pSeek-V2.5 wn Qwen2.5-72B-Inst Llama-3.1-405B-Inst GPT-40-0513 Claude-3.5-Sonnet-1022
100
90.2
/ 80.0
78.0 78.3
73.874.6
716722726
:é : 65.0
<
é 59.1
]
g
B 50.8
g .
~
Z 64 42.0
I i s 38.8
3
< /
o ”I;BISHS
MMLU-Pro GPQA-Diamond MATH 500 AIME 2024 Codeforces SWE-bench Verified

(EM) (Pass@1) (EM) (Pass@1) (Percentile) (Resolved)

Figure 1 | Benchmark performance of DeepSeek-V3 and its counterparts.

DeepSeek upgrade Algo and HardWare

We will focus on algorithm level innovations

What is Unique about DPSK V3

Multi-Head Multi-Token
"Latent" Prediction

Attention with Auxiliary-
Loss-Free Load

Balancing

DeepSeekMoE

Some (redundant) preliminaries...

Output
Probabilities

Ted [
Prediction | Classifier
Transformer Block x L
F T Y
t 1 ¥ 1
Add & Norm : i
Feed Layer Norm : { Feed-Forward Network }:ﬁ
Forward T 1 I |
1 |
_)‘ 1 1
=) Add & Norm G : '
Add & Norm (- RMS Norm -
Muiti-Head Feed Forward : }
Feed Attention ! g
Forward Nx Y 1 1
12x — 1 4 |
| |
N Add & Norm : !
Add & Norm = 1
. _ Masked Layer Norm ; Attention c*
Mutti-Head Muiti-Head L i N
Attention Attention oF ! ‘| I
[} ¥ Y 7 < : :
\— J N _J) Masked M}jlﬁ : { RMS Norm } :
Positional ® e Positional Attennon | |
Encoding Encoding : A
__________________ 1
Input Output —
Embedding Embedding
I] Text & Position Embed

Inputs Outputs
(shifted right)

(a) encoder-decoder in Transformer. (b) decoder-only Transformer in GPT. (c) Optimized decoder-only Transformer.

Scaled Dot-Product Attention Multi-Head Attention

t
f Linear
MatMu' A
i | Concat
SoftMax ve
4 - :
sk jopt) Scaled Dot-Product :
t Attention Gl
Sc:ale r"A‘L - r{,ﬁ - r‘,,ﬂ | '
MatMul Linear P Linear P Linear J”
t 1 ¥ ¥ ¥
Q K vV

Multi-Head Attention Mechanism Summary

Step 1: Linear projection

Input vector P is projected into Query (%), Key (1), and Value (%) vectors:

9 = Wtha k., = WKht) Vg = WVht

where projection matrices:

WQ, WK, WV c [Rdhnhxd’ &, kt’ v, € [Rdh”h

Step 2: Split into multiple heads

9 = [Qt,1§ qt25 3 qt,nh]a k, = [kt,l; kt,2§ s kt,n,,]; U = [Ut,1§vt,2§ o) vt,nh]

Step 3: Scaled dot-product attention (for each head i):

t 'Tk »
0y = ZSoftmaxj (qt’\;deJ) Vji
j h

Jj=1

Step 4: Concatenate and project back

Concatenate outputs from all heads and apply another linear transformatig

- (0} . . i
u =W [om, 0495 ...,ot’nh]

Here, W© maps from dimension (7 * d1) back to d.

import torch, math
import torch.nn as nn
import torch.nn.functional as F

class MultiHeadAttention(nn.Module):
__init__(self, d_model, n_heads):
super().__init__()

def

self.n_heads = n_heads

self.d_k = d_model // n_heads

self.W_QKV = nn.Linear(d_model, 3 * d_model)
self.W_0 = nn.Linear(d_model, d_model)

forward(self, x):

B, T; _ =l x.size()

d. ki Vv self.W_QKV(x).chunk(3, dim=-1)

a, k, v [m.view(B, T, self.n_heads, self.d_k)
.transpose(1, 2) for m in (q, k, v)]

attn (g @ k.transpose(-2, -1)) / math.sqrt(self.d_k)

attn F.softmax(attn, dim=-1)

out = (attn @ v).transpose(1, 2).contiguous()

out = out.view(B, T, -1)

return self.W_O(out)

Key-Value Cache (KV Cache)

LLM in training: parallel attention matrix calculation. In infer: one by one

Purpose: Speeds up autoregressive decoding by reusing cached keys (K) and values
(V) instead of recomputing them.

How:
Compute only the new query (Q).
Reuse cached K & V from previous steps.
Append newly computed K & V to the cache for future use.

Trade-off: Increased memory usage (batch x seq_len x hidden_size x heads), avoid
repeat calculation of K and V.

Solutions: Multi-Query Attention, Grouped-Query Attention reduce memory overhead.

Reduce heads of K and V

MHA, GQA, MQA

GQA widely used, (e.g.: Llama)

Multi-head Grouped-query Multi-query
Values
Keys

~-00000000 008B000 uunuuuuu

RoPE: Rotary Positional Embeddings

Absolute Position Embedding

X Poor generalization to unseen sequence lengths
Relative Position Embedding

X Extra parameters, computationally expensive
RoPE’s Advantages

("4 Generalizes naturally to longer sequences

4 Parameter-efficient (no extra params)

{74 Stable positional encoding via rotation operations

RoPE: Rotary Positional Embeddings

Motivation: Encode relative positions naturally by rotating vectors.
Represent query/key vectors as complex numbers, rotating them

by angles proportional to their positions

fo@mym) = (Wyz,)e™, fi(z,,n) = (Wi,)e™

- Rotation matrix form:

£, (@, m) = (cos mf — sin mO) W

sinm@ cosm@ g¢-m

- Relative positional attention:
9(x,,,x,,m—n)=Re [(W z, \(W,z,) elm n.)o]

m*ni qg—m

10

1 DeepSeek’s new techniques
Multi-head Latent Attention: Compress the KV cache!

CIQ = WDthr
GRS o e - a¢ = wl@ Q
[qt,l’qt,Z’ sesy qt,nh] =g = Ce s
T R T B R e
¢,17 Vit,27 ***7 “it,ny, t T 77
— B
qei = [9:::9;;],
= WPKV,,
G . - LG UK KV
[ktl’kt,Z" b7 tm] k =W ’
R
= [k kel
e e — uv KV
Ivt,l'vt,Z"“ tm] V =W
t y
qti It
O = ZSoftmax,(vii

0O : .
i W [ot,]lot,?.l seey ot,n,,]/

- Wth,

where projection matrices:

WQ, WK’ WV c [Rdhnhx‘i’ Rdhnh

Qt, kt)“t =

Compress attention input h_t to c_tNKV}
through WANDKV} (down KV). This
reduce KV cache!

Could also shrink query.

Need extra treat of RoPE.

11

MLA continued

CtKV — WDKV, h’t

kC = WUK KV — UKy DKV,

Weight matrix absorbed in implementation

(CItC)ka = (C?)T(WUQ)TWUKC{W C_t reduce cache storage

Decoupled RoPE: W could not be absorbed since R is inserted.

R depends on g and k position.

(C)FRES = (e (WY L RWIE LY

12

Decouple RoPE with Latent

Simple Solution:

Add extra heads for RoPE:

g _t*R and k_t*"R

G
[qt,l’ qt,2’
!t [
[qtll, q; 2 -

[KE,; 55 .

t,1/

[Vzc,l? v

G

t,z’ weey

Q = WDthl
C U
;qt,nh] = qt W Qct ’
i 4t] = 4 = ROPE(W%¢Q),
ti = [qtc,,/ qf’i]r
C:(V WDtht,
C 1_3C UK KV
Kol =k =W ,
k® | = RoPE(WXRh,),
kei = [kii; k],
tn;,] = V¢ C _w'e¢ KV
t qT
K
Oi = Z Softmax;(—= i
R
j=1 dy + dh
W = WO[Ot,l} 0¢,2; -/ Ot,n;.]/

13

Multi-Head Latent Attention (MLA)

—— e e e o e e e o o e

Cached During Inference |
Output Hidden u;(OOQQ - - OO0OO0]
T
[Multi-Head Attention]

{[a; a8} eleol®

A
concatenate

wigoel©

OO }'OO

{[kg; KET} OQO

concatenate

kf@

{kt,l} @ {Vt,l} OO

apply apply 3
ROPE ROPE
Latent c,? Latent cXV [@@ ®®]
T
Input Hidden h, (OOQQO - - OOOO0]

__

14

So MLA is efficient but keeps good capacity

Attention Mechanism KV Cache per Token (# Element) Capability
Multi-Head Attention (MHA) 2npdpl Strong
Grouped-Query Attention (GQA) 2ngdpl Moderate
Multi-Query Attention (MQA) 2dpl Weak

MLA (Ours) (de +dR) ~ 3dyl Stronger

15

From DeepSeek V2 https://arxiv.org/pdf/2405.04434

DeepSeek’s Mixture of Experts

671B total parameters
l
with 37B activated i
|
for each token :
Great capacity in training .

Efficient in Infer

DeepSeekMoE

(OOOO

Output Hidden h;

Routed Expert

Shared Expert

Feed-Forward Network

N N,

h = +) FEN{® () + > g, FEN{" (),
i=1 i=1

Attention: most computation heavy

FFN: most parameters (> 70%), less computational heavy,

Knowledge stored here

Compute somewhere, store elsewhere (Brain?)

Transformer Block xL

(\
Feed-Forward Network |<
& 7
(i N\
RMSNorm
| J
Ve nY
3/
& 2N
Attention S
- J
IS8 ~\
RMSNorm
& 4

17

2Mixture of Experts

Experts: split FFN into groups (feature dimension)
Dense MoE: weight the group’s output

Sparse MoE: select Top K FFN

Gate could be a MLP
Iy Iy

—'[Add + Normqlize] —’[Add + Normalize]

() /

[FFNI] FFN2][FFN3 | FFN4]

(a) Dense MoE (b) Sparse MoE

18

Issues of MoE

Experts role overlap: redundant
We want different experts have different role: coding, math, daily, etc

|ldea: need ensembling of more small models, number and quality tradeoff

DeepSeekMOE:

o Increase FFN numbers
o Each FFN decrease feat dimension
e Generalist: Make some experts shared

o Common sense experts
o Always chosen

e Specialist: Split experts to finer granularity °~&2

(a) Conventional Top-2 Routing =mmmp (b) + Fine-grained Expert Segmentation s (c) + Shared Expert Isolation
(DeepSeekMoE)

From DeepSeekMoE https://arxiv.org/pdf/2401.06066

Load balancing

After initialization

Self-reinforce: Router always assign token to some “better” experts.
the rich get richer and the poor get poorer

Ensemble is meaningless

20

Loss to control load balancing

N
loss:a-N-Zfi-P,-
i=1

where f; is the fraction of tokens dispatched to expert i,

fi = % Z 1{argmax p(x) = i}

z€B

and P; is the fraction of the router probability allocated for expert i,

1
b= > pi(@).

z€eB

In a very large batch size, make actual allocation and probability assigned to each
expert balance. Min achieved when uniformly routed.

From Switch Transformer https://arxiv.org/pdf/2101.03961

21

Concern with loss control

Might be wrong??
(0.5, 0.5) (0.5, 0.5) vs (0.1, 0.9) (0.9, 0.1)

It is worse than DeepSeek’s loss-free balancing

1B 3B
1.25 1.25
Load Balancing
1.00+ 1.00 —— Loss-Controlled
S —— Loss-Free
(;80.75- 0.751
é r
g 0.501 0.501
0.25 \ 0.25
0.00— ; ; — — 0. - - - ; ; -
Ok 10k 20k 30k 4Ok000 Ok 10k 20k 30k 40k 50k
Step Step

From DeepSeek auxiliary loss free load balancing https://arxiv.org/html/2408.15664v1

Loss free load balancing

Add loss might influence the model performance.

sity Sit+bi € Topk({sj:+bj|1 < j < N;},K;),
0, otherwise.
Add a bias term b_i

, —
it =

If in one batch, expert i is overload, decrease the bias term by gamma to reduce
the prob it is assigned

N N,
. h =u+) FENY® (u)+ > g, FFN{ (u),
u_t:input to FFN i=1 i=1

2
. . . it = SN,
e _i: centroid of expert i g,
DeepSeek has good load balancing so g = {5 sie € ToPK({sjell < j < No}, Ko),
. 0, otherwise,

They avoid token dropping (skip connection) si = Sigmoid (u."e;), 23

3 Multi Token Prediction

Key technique to reduce cost and increase performance

[Embedding Layer] [Embedding Layer] [Embedding Layer]

___________ el e mrewnd s W e ry—tt

Input Tokens ty ty t3 ty ty t3 ty ts t3 ts ts te

Target Tokens t, t3 ty ts t3 ty ts te ty ts te t;
[Cross-Entropy Loss]—' Lyain [Cross-Entropy Loss]—* Lrrp [Cross-Entropy Loss]—* Lérp
| [ittt B N i R e
1 Main Model I ' MTP Module 1 ! : MTP Module 2 :
: (Next Token Prediction) : : (Next? Token Prediction) : I (Next? Token Prediction) 1
I I : !
: Output Head : I Output Head | L Output Head !
| ! ¥ I] |
: — | | | :
1 I 1
I \\ ; : [Transformer Block] : I [Transformer Block J)
I I }
I 1 ! I i
I \] : : { : I f :
: | : [Linear Projection] I : [Linear Projection] :
: Transformer Block X L : | concatenation : : concatenation |
I 1 ! I 1
! I . ! (RMSNorm)(RMSNorm] | : (RMSNorm I RMSNorm | !
: o o~]
i i i ’ | |
| 1 1 1 | :

Prior works: how to predict next tokens

LLM Training: Meta MTP: Parallel Heads + Training
LLM Inference — Speculative Decoding

Independent: Google/DeepMind

Self: Medusa (Parallel heads), EAGLE (Causal heads)

DeepSeek MTP: causal heads for future token prediction

25

Multi Token Prediction

During training: parallel, next token prediction with teacher forcing
A causal mask make sure only see previous ground truth tokens.

Lacks the planning ability — if we predict multi tokens...

Discarded at inference (or used to speed up model up to 3 times)

4-token 2 B 3 R 4. 54
targets

Group heads and predict future 4 tokens
Training signals * 4

Planning ability, learn hard transition, useful
in inference when no teacher forcing

Inputs Meta MTP https://arxiv.org/pdf/2404.19737 26

MTP helps predict hard transition

The hard transition is 5—A
In next token prediction case: 1/7 weights are put in hard transition learning

In next 3 tokens prediction: 3—A, 4—A, 4—B, 5—A, 5—B, 5—C. 2/7 weights

Model

Training efficiency predictions

@w O O)

(.

Reasoning ability

SRS
— (\0‘1 > UJI
(> _© 0)
» (0 ‘B2 m)

_»‘l _T; T

i At 5 e B

4

Ground truth 1 —»

K
5
4

. 7

— 3

N —=(w b~)

27

LLM Inference: Speculative Decoding

Inference is so SLOW!

Big model, large KV cache, high memory consumption, sequential
predicting.

Small model, fast but stupid

Speculative Decoding: Ask juniors do some easy task and take over if they are
wrong

Step1 Quick Guess: A small model predicts 3-5 tokens.

Step2 Cheap Verification: The big model accepts or corrects them

28

[START] japan ' s benchmark bend n

Speculative Decoding ST japan | s benchmark nikce 22 ;3

[START] japan ' s benchmark nikkei 225 index rose 22 =6

H O —) et b] p—]]]

Step 1- a small 7B LLM proposes [START] japan ‘s benchmark Ei.._l'(l'(_.ei 225 index rose 226 . 69 points

Independent: another small LLM
Self: use part of the heads within big model
Step2: the big 70B LLM verifies

The predicted 5 tokens could be fed into the big LLM and compute final probability
parallelly. If it is biggest, accept, if now, big LLM recompute the wrong token.

Could reduce the forward pass rounds, save time! (not saving compute)

https://arxiv.org/abs/2211.17192 29

Self Speculative Decoding

Use part of the heads within big model
Parallel heads

Autoregressive(causal) heads (better)

30
https://arxiv.org/html|/2408.08146v1

DeepSeek’s MTP

Putting things together:

Predict multiple future tokens, with causal heads. I-th token’s feature concat with i+1
token’s embedding to predict i+2 token...

During inference, only main model needed. And the feature contains planning

information!

Input Tokens ty ty t3 ty

Transformer Block X L |!

t ty ts te

Cross-Entropy Loss |"' Ligrp

! MTP Module 1
| (Next? Token Prediction)

ty ts te ty
Cross-Entropy Loss }" Lire

| MTP Module 2 !
I (Next? Token Prediction)
1

Output Head

1
1
1
1
1
Transformer Block |
]
1
1
1

Linear Projection

n :

1

RMSNorm || RMSNorm :
1

1

Figure 3 | Illustration of our Multi-Token Prediction (MTP) implementation. We keep the
complete catisal’chain for the prediction of each token at each depth.

31

Transformer Block xL

—— = e = -

I

RMSNorm

o
A%

[RMSNorm]

[Attention]\
A

Shared Expert

Cached During Inference
Output Hidden u; (OO OO - ~ OOOO)
1

[Multi-Head Attention]
t

{QEi}

apply
RoPE

OO ~OO]Latent ctQ

O Routed Expert :

32

